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Benczúr
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1 Introduction

In this document, we summarize our findings regarding the applicability of onion
routing for validator privacy in the Ethereum network. The document is writ-
ten in the context of [1], where we summarize the motivation, background, and
related literature related to validator privacy research. The ideas presented in
this document are our own, however, some were invented through discussions
with members of the Validator Privacy Research discord group (see Acknowl-
edgements in Section 4).

Onion routing is a privacy technique for anonymous communication, also used in
the Tor network [2]. It allows an originator and another party to communicate
through a series of relayers in a way that no single party can confidently link the
identity of the originator to the recipient or the content of the message. Onion
routing works by encapsulating the messages in multiple layers of encryption,
where each relayer is able to reverse a single layer of encryption.

We investigate whether a scheme based on onion routing can be used to make
validator on-chain identities (i.e., public key) unlinkable to validator off-chain
identities (i.e., IP addresses) in the Ethereum proof-of-stake protocol (PoS). This
work focuses on a solution self-contained in the Ethereum network, unlike [3],
which investigates the possibility of using the Tor network for the same purpose.

It is generally considered very hard to implement Tor-like solutions in a way
that there is no privacy leakage through various wire-protocol level side-channels
such as timing side-channels or other metadata leakages (e.g., the size of the
messages and other fingerprints, quasi-identifiers). These details are out of scope
for this work, and in what follows, we primarily focus on Ethereum-specific
considerations and omit general onion routing-specific details and adversaries.

Ultimately, we conclude that onion routing indeed can be used to enhance val-
idator privacy. However, the design and implementation have to pay attention
to several Ethereum-specific details, such as side-channels or spam protection.
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2 Onion routing for validator privacy

The basic goal we set out to accomplish is to make it possible for PoS par-
ticipants to broadcast attestations and propose blocks to the network with-
out revealing their off-chain identity. If a participant broadcasts self-originated
messages themselves, then adversaries can link the participant’s off-chain and
on-chain identities with high probability through various strategies [4]. Dande-
lion [5] and Dandelion++ [6] propose schemes where the role of the originator
is separated from the role of the broadcaster, and the message arrives from
the originator to the broadcaster through a series of hops in the peer-to-peer
network, where each hop is a relayer who transmits the message to the next
one in plain text. However, it turns out that employing relayers is insufficient
to prevent similar attacks [7]. Further, a fundamental problem with such ap-
proaches is the first hop, who is aware of the content of the message and also
communicates with the originator directly, revealing both the public key and IP
address at the same time, see Section 3.2.

The general idea of an onion routing scheme is similar to Dandelion-style schemes
in that the message is relayed from the originator to the broadcaster through
a number of hops. The main difference, however, is that the relayers forward
the message encrypted, and only the broadcaster sees the message in plain-text.
The originator encrypts the message using the public key of each relayer, and
each relayer forwards the message by first unencrypting it using its private key.
Successfully executed, onion routing has the potential to prevent any single
party from linking the IP address and public key of the originator.

2.1 Proposed protocol

In this section, we summarize a protocol that uses onion routing in the way we
described in the previous section.

Relayer selection. The originator needs to select at least 3 nodes from a
uniform distribution over the participants of the peer-to-peer network, without
revealing information about the selected nodes to any other participant. Ideally,
these need to be independent of existing peer-to-peer neighborhoods, otherwise,
the selection is not uniform. We describe the reason for the lower limit of 3 in
Section 2.2, and further discuss the challenges related to random selection in
Section 3.1.

Establishing the communication channel. The originator o first needs to
establish an encrypted communication channel to the first relayer r1, including
exchanging public encryption keys, shared secrets, etc. When the channel is
established, the originator needs to repeat the process with the second relayer
r2, however, this is done through the already established encrypted channel,
with r1 relaying messages between o and r2. This way r2 has no knowledge of
the off-chain identity of o. When an o ↔ r2 channel is established, the process
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is repeated for r3, r4, etc., each time using the channel from the previous step.
The final channel between o and the broadcaster rk = b uses all ri relayers.

Channel maintenance. Since each new channel carries the additional risk
of being compromised and establishing a channel takes time, the established
channel needs to be maintained as long as possible. Maintenance consists of
exchanging keepalive-messages, spam-protection proofs described in Section 3.4,
and generating dummy traffic described in Section 3.3.

Originating messages. When the originator needs to broadcast attestations
or propose blocks, they use the established channels to do so.

2.2 Privacy analysis

In this section, we study the privacy guarantees of the protocol described in
Section 2.1. Let us assume that an adversary controls the set of nodes A with
|A| = n of the N participants of the networks. Let us also assume that the
communication channel has k ≥ 3 participants apart from the originator o,
denoted by r1, . . . , rk = b, where b is the broadcaster. Then for each participant

P (ri ∈ A) =
n

N
. (1)

If all participants ri are under the control of the adversary, then the privacy
of the originator is obviously compromised on the first attestation or block
proposal that goes through the channel. Thus, the best we could hope to show
is that as long as one participant ri is honest, the originator keeps their privacy.
Unfortunately, this is almost, but not quite true, as we will see in a moment.

To make a more formal analysis, we first need some assumptions.

Assumption 2.1 (Local adversary). The adversary is only able to observe the
communication of the nodes they control.

Assumption 2.2 (Relayer uniformity). The relayer selection is uniformly ran-
dom and the selection process does not reveal any information about the selec-
tion to others.

Assumption 2.3 (No global correlation). The first relayer r1 cannot corre-
late the forwarded messages to public information in other ways, where public
information means information available to nodes outside of o, ri.

Proposition 2.4. Given Assumptions 2.1 to 2.3 and k ≥ 3, the privacy of the
originator is protected as long as either r1 or both rk−1 and rk = b are honest.
As a consequence,

P (compromised ) ≤ α(1− (1− α)2) ≤ 2α2, (2)

where α is the probability of any single relayer being controlled by the adversary.
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Proof. Since the only entity aware of the off-chain identity of the originator
is r1 (Assumption 2.1), if r1 is honest, the privacy of o is preserved: for any
other node, the anonymity set for the originator is the set of all participants
(Assumption 2.2). If r1 is compromised, but both rk−1 and rk are honest,
then r1 and any other adversary nodes in the channel can only rely on public
information (i.e., information from after the message is broadcasted) regarding
the on-chain identity of o, which is of no use (Assumption 2.3).

We believe that any stricter theoretical bounds are unreasonable. There are two
reasons for this. First, if both the off-chain identity of o and the identity of b are
both known to the adversary, then the anonymity set of o is greatly reduced:
the adversary can attempt to identify the broadcasters for all messages in the
network through strategies similar to those described in [7]. This leads to the
requirement that both rk−1 and rk = b need to be honest in order to hide the
identity of the originator.

Second, if both r1 and either rk−1 or rk are controlled by the adversary, then
additional honest intermediate ri relayers with 1 < i < k− 1 can not guarantee
the anonymity of o unfortunately. The reason for this is that if two adver-
sary nodes are in the same channel, then they can use end-to-end correlation
attacks [8, 9] to find out about the fact that they are in the same channel, ef-
fectively making any intermediate relayers negligible from a privacy standpoint.
Such attacks can work either passively, by correlating packet timings and sizes,
or in this case even actively, deterministically introducing small but detectable
latency patterns into the channel traffic. Note, however, that if such attacks can
be prevented, then the privacy guarantee slightly improves: if we can prevent
end-to-end correlation attacks, then either r1 or any two consecutive relayers
ri, ri+1, 1 < i being honest is sufficient to guarantee the anonymity of o.

Proposition 2.4 further relies on Assumptions 2.1 to 2.3 described above. Prepar-
ing for adversaries that can observe communication between 3rd parties is out
of the scope of this work, so we do not further discuss Assumption 2.1. The
remaining two are fairly strong assumptions. Assumption 2.2 is a hard but
well-contained problem, which we discuss in Section 3.1. Assumption 2.3 is
more insidious, as there are many possible ways of attempting to correlate in-
formation from before the honest node in the channel to public information.

Also note that while r1 is aware of the off-chain identity of o, r1 is not provided
with the information that they are the first relayer, so even if all participants of
a channel are controlled by the adversary, they can not be certain of this fact.
However, from the perspective of any ri, the previous relayer in the sequence
always has a higher than uniform chance of being o, which leaks information.
Further, a relayer in the channel can employ timing-based attacks to try to
reveal its index i, as described in Section 3.2.
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3 Challenges and considerations

In this section, we discuss the challenges relating to Assumptions 2.2 and 2.3,
as well as other requirements such as spam-resilience, latency, and robustness.

3.1 Relayer selection

Selecting participants for the communication channel such that it includes at
least one honest node is a nontrivial task. Further, the design space of relayer
selection approaches is vast: we describe methods we are aware of, and list
arguments for and against them. The most feasible method with our current
understanding seems to be a combination of rate limiting nullifier (RLN) [10]
proofs and the usage of Ethereum’s DevP2P protocol [11], described in Sec-
tions 3.1.3 and 3.1.5

3.1.1 Sampling existing neighbors

The originator can randomly sample k nodes from its neighbors from the existing
peer-to-peer network. This approach is beneficial mainly because it is very easy
to implement. Disadvantages include the fact that each relayer knows that
the originator is one of their neighbors, potentially opening the possibility of
intersection-attacks [12]; and also the fact that eclipse-attacks [13] can amplify
the probability of de-anonymizing a targeted originator.

3.1.2 Asking the neighbors for their neighbors

The originator could choose r1 from its existing neighbors, ask r1 to choose r2,
etc. This approach avoids intersection attacks, however, we can assume that the
first adversary node encountered only offers further adversary nodes as potential
relayers. As a result, the probability of being compromised is at least α, with
eclipse-attacks again amplifying the probability of being de-anonymized.

3.1.3 Using the existing DevP2P protocol

One could repeatedly use the already established node-discovery protocol of
Ethereum [11] to sample nodes from the network. However, while the proto-
col does have some sybil-resistant properties, it is unclear whether DevP2P is
sufficiently sybil-resistant to be employed for relay selection.

3.1.4 Distributed relayer-sharing protocols

It is possible to design a protocol for sharing possible relayer nodes between
clients, similar to how new transactions spread around the network using the
mempool. A key difference, however, is that messages containing node informa-
tion can be treated as ephemeral, meaning that a node discards the information
after relaying it, only keeping a secret pool of randomly selected nodes for future
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use as relayers. However, any such scheme needs to be carefully studied to as-
sess multiple possible failure points, including the potential impact on network
load, spam resistance, and resistance against biased adversary nodes who also
participate in the protocol.

3.1.5 Proof of being a validator in zero-knowledge

A general approach to providing Sybil resistance is to only select relayers from
nodes that have proven that they are themselves unique validators in PoS. This
can be done using rate limiting nullifiers (RLN), a zero-knowledge proof sys-
tem [14, 10] that can be used by the validators to prove that they are indeed
validators, along with the fact that the proof is unique to them, without re-
vealing anything further. Then, the originator can collect a certain m number
of possible relayers and corresponding RLN proofs, and randomly sample k of
them as relayers. Assuming at most n validators controlled by the adversary,
this means a guaranteed at most n

m chance of a single chosen relayer being con-
trolled by the adversary. The sampling of m possible relayers can be done in
the fashion described in Sections 3.1.3 or 3.1.4.

3.2 First-hop detection

In this section, we describe an attack intended to find the relayer index i of an ri,
or more specifically whether a given relayer is the first in a channel. The same
attack can be used against Dandelion-style solutions, in which case it serves as
an immediate de-anonymization vector for r1 against the originator.
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ck...
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attestation
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Figure 1: Possible scenarios for first-hop detection.

The main assumption behind the attack is the relayers can detect the timing
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of the relayed attestation, even in its encrypted form, while in Dandelion-style
solutions it requires no additional assumptions. The goal of the relayer ri is to
determine whether the previous relayer in the sequence ri−1 is the originator.
We describe a way to attempt this by manipulating the timing of the attestation.

The earliest time an originator can make an attestation is when they become
aware of a new head block [15], at which point they are incentivized to broadcast
the attestation as fast as possible. The adversary can use this to their advantage
by placing a neighbor n1 in connection with ri−1, acquiring new blocks as fast as
possible (for example through a supernode or many nodes placed geographically
evenly throughout the network), and propagating the blocks to ri−1 through n1.

The two possible scenarios that need to be differentiated between are displayed
in Figure 1. In scenario A, o = ri−1, while in scenario B o ̸= ri−1 and ri−1 is
connected to o through some other path in the P2P graph. As we can expect
the propagation path n1 → ri−1 → [. . .] → o → ri−1 → ri to take longer than
n1 → ri−1 → ri, we can expect this method to be able to differentiate between A
and B given realistic estimates for propagation and hop latencies. An additional
n2 neighbor placed in connection with ri−1 can serve as a benchmark for such
latencies.

Protecting against this kind of attack by introducing random or minimum delays
is not an effective strategy, as random delays can be averaged out over longer
time periods, and minimum delays only work if part of the network is willing
to not use them, otherwise, the attacker can just subtract the general minimum
delay from the measured timings. That is to say, minimum delays can not
protect everyone at the same time.

3.3 De-anonymization through public information

In this section, we discuss a strategy that adversaries could use to correlate
events of the encrypted channel to global events, i.e., Assumption 2.3.

The largest concern regarding this is if r1 is able to detect when they are relaying
encrypted blocks or attestations, as these become public shortly thereafter. Each
validator is required to send an attestation in each epoch, however, the slot when
they are required to do this is selected randomly. Since the timing of slots is
relatively tight [16], this makes it possible for r1 to intersect the attestor-sets of
each slot that o is active in. Further, it is safe to assume that attestations and
blocks can be distinguished in encrypted form, as the latter is much larger in
size. This makes such attacks even more problematic, as only a single validator
publishes a block proposal in a particular slot.

A solution for these attacks is to generate dummy traffic in the channel, hiding
the timing of real attestations and proposed blocks. Each originator sending a
dummy attestation in each slot is plausible, as these are trivial in size [15] and
can be discarded by the broadcaster. Blocks, on the other hand, can be over
100kb in size. A possible scheme to reduce the load generated by dummy blocks
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is to partition validators into multiple classes, and have every validator in the
same class send dummy blocks whenever the block-proposer for the given slot
is from the same class as themselves. This results in a trade-off: larger classes
mean larger anonymity sets for block proposers but also mean more overhead
traffic in the network.

We note that the planned Single Secret Leader Election (SSLE) [17] scheme
could, unfortunately, make the partitioning strategy for dummy block traffic
impossible to implement, as the participants can no longer know whether they
are in the same class as the secret leader. It is unclear whether an SSLE al-
gorithm itself can include such a partitioning in a way that participants can
compute the class of the leader without revealing the identity of the leader.

3.4 Spam protection

Spam protection is a crucial point of onion routing. When originators com-
municate in plaintext, then each relayer of a message can assert its validity.
This prevents anonymously flooding the network with messages, as a spammer
cannot freely generate an unlimited number of valid messages.

On the other hand, relayers in encrypted channels cannot assess the validity of
messages. We propose the usage of an RLN scheme [14], similar to Section 3.1.5.
However, instead of proving the validity of messages, we propose proving that
the given relayer ri is one of s allowed relayers for the originator o.

Proving the validity of messages using ZK technology is infeasible because at-
testation and block proposal have very tight latency requirements [16], and
generating ZK-proofs can take a considerable amount of time (where even half
a second is considerable for this use-case). However, if we use RLN constructs
to limit the number of channels that any single originator is allowed to use at
the same time, then the proofs can be computed before-the-fact.

Our goal is then to achieve for each originator to be able to uniquely prove that

• They are part of the validator set,

• The relayer r is index 1 ≤ t ≤ s of their allowed max s relayer capacity,

• The proof is for the given epoch with index e.

This is indeed possible to achieve by using RLN. Below we give an example
scheme that achieves all three points. Using the notations and terminology
of [10], the originator needs to prove

f(M,N, pkr, y, e, t), with (3)

y = hash(ko, e, t) · hash(pkr, e) + ko, and (4)

N = hash(ko, e, t, 0), (5)

where M is the Merkle root containing all validators, pkr is the public key of
the relayer, e is the epoch number, t is the selected index of the allowed relayer
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capacity of o, and ko is the private key of o. The relayer keeps the resulting
nullifier N and line evaluation y.

This scheme works by having the nullifier N be deterministic and unique for
each (ko, e, t) tuple, while offering no information about the identity of o. The
originator o cannot prove two separate relayers for the same epoch e with the
same index t without the nullifier being identical for both.

Given a public store for nullifiers, this solves the problem. However, such a
store is not a given, and creating one is not easy, as it would recursively run
into its own spam problem. For lack of a better solution, the described scheme
also relies on the “two points make a line” technique of [10]: if the originator
proves two separate pkr relayer keys for the same (e, t) values, then the proofs
together reveal the private key ko of the originator through the corresponding
line evaluations, y1 and y2. Since the originator is a staker in PoS, this, together
with nullifiers to match proofs to each other, could serve as a sufficient deterrent
from spamming the network.

3.5 Latency and robustness

Latency and robustness are crucial properties of any method that validators
use to publish attestations or propose blocks. Relayers could go offline at any
minute, and network-stability issues could cause attestations to be delayed. To
improve the chances of successfully participating, the originator can use mul-
tiple channels, improving both expected latency and robustness. The dummy
traffic proposed in Section 3.3 can also serve as a continuous benchmark for
the properties of the channels, with sub-par channels being dropped in favor of
better ones. This is also compatible with the spam-prevention scheme described
in Section 3.4, where for example, s = 12 allows for either 4 parallel channels
with 3 relayers each or 3 parallel channels with 4 relayers each.

The chance of being compromised is slightly worse when multiple channels are
used. If a single channel results in o being compromised with probability β,
then using t channels yields P (compromised ) = 1− (1− β)t ≤ tβ.

4 Conclusion

We conclude that while onion routing can work for validator privacy, it has a
large number of possible failure modes, each of which needs to be addressed care-
fully. However, if all required assumptions can be met, then it has theoretical
guarantees for keeping validators private.
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